A dearth of short-period massive binaries in the young massive star forming region M 17. Evidence for a large orbital separation at birth?

Sana, H.; Ramírez-Tannus, M. C.; de Koter, A.; Kaper, L.; Tramper, F.; Bik, A.

Astronomy & Astrophysics, Volume 599, L9 (2017)

ADS – Journal – arXiv

Abstract

Aims: The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we aim to quantitatively investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence stars (σ1D= 5.6 ± 0.2 km s-1) in the very young massive star forming region M 17, in order to obtain first constraints on the multiplicity properties of young massive stellar objects.
Methods: We compute the radial-velocity dispersion of synthetic populations of massive stars for various multiplicity properties and we compare the obtained σ1D distributions to the observed value. We specifically investigate two scenarios: a low binary fraction and a dearth of short-period binary systems.
Results: Simulated populations with low binary fractions () or with truncated period distributions (Pcutoff > 9 months) are able to reproduce the low σ1D observed within their 68%-confidence intervals. Furthermore, parent populations with fbin > 0.42 or Pcutoff < 47 d can be rejected at the 5%-significance level. Both constraints are in stark contrast with the high binary fraction and plethora of short-period systems in few Myr-old, well characterized OB-type populations. To explain the difference in the context of the first scenario would require a variation of the outcome of the massive star formation process. In the context of the second scenario, compact binaries must form later on, and the cut-off period may be related to physical length-scales representative of the bloated pre-main-sequence stellar radii or of their accretion disks.
Conclusions: If the obtained constraints for the M 17’s massive-star population are representative of the multiplicity properties of massive young stellar objects, our results may provide support to a massive star formation process in which binaries are initially formed at larger separations, then harden or migrate to produce the typical (untruncated) power-law period distribution observed in few Myr-old OB binaries.

Keywords: binaries: spectroscopic; stars: early-type; stars: formation; open clusters and associations: individual: M 17; Astrophysics – Solar and Stellar Astrophysics


The Tarantula Massive Binary Monitoring. II. First SB2 orbital and spectroscopic analysis for the Wolf-Rayet binary R145

Shenar, T.; Richardson, N. D.; Sablowski, D. P.; Hainich, R.; Sana, H.; Moffat, A. F. J.; Todt, H.; Hamann, W. -R.; Oskinova, L. M.; Sander, A.; Tramper, F.; Langer, N.; Bonanos, A. Z.; de Mink, S. E.; Gräfener, G.; Crowther, P. A.; Vink, J. S.; Almeida, L. A.; de Koter, A.; Barbá, R. Herrero, A.; Ulaczyk, K.

Astronomy & Astrophysics, Volume 598, A85 (2017)

ADS – Journal – arXiv

Abstract

We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159 d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300 M, making it a candidate for being the most massive star known to date. While the primary is a known late-type, H-rich Wolf-Rayet star (WN6h), the secondary has so far not been unambiguously detected. Using moderate-resolution spectra, we are able to derive accurate radial velocities for both components. By performing simultaneous orbital and polarimetric analyses, we derive the complete set of orbital parameters, including the inclination. The spectra are disentangled and spectroscopically analyzed, and an analysis of the wind-wind collision zone is conducted. The disentangled spectra and our models are consistent with a WN6h type for the primary and suggest that the secondary is an O3.5 If*/WN7 type star. We derive a high eccentricity of e = 0.78 and minimum masses of M1sin3I ≈ M2sin3I = 13 ± 2 M, with q = M2/M1 = 1.01 ± 0.07. An analysis of emission excess stemming from a wind-wind collision yields an inclination similar to that obtained from polarimetry (I = 39 ± 6°). Our analysis thus implies and , excluding M1 > 300 M. A detailed comparison with evolution tracks calculated for single and binary stars together with the high eccentricity suggests that the components of the system underwent quasi-homogeneous evolution and avoided mass-transfer. This scenario would suggest current masses of ≈ 80 M and initial masses of MI,1 ≈ 105 and MI,2 ≈ 90 M, consistent with the upper limits of our derived orbital masses, and would imply an age of ≈ 2.2 Myr.

Keywords: binaries: spectroscopic; stars: Wolf-Rayet; stars: massive; Magellanic Clouds; stars: individual: R 145; stars: atmospheres; Astrophysics – Solar and Stellar Astrophysics; Astrophysics – Astrophysics of Galaxies


The Tarantula Massive Binary Monitoring. I. Observational campaign and OB-type spectroscopic binaries

Almeida, L. A.; Sana, H.; Taylor, W.; Barbá, R.; Bonanos, A. Z.; Crowther, P.; Damineli, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gieles, M.; Grin, N. J.; Hénault-Brunet, V.; Langer, N.; Lennon, D.; Lockwood, S.; Maíz Apellániz, J.; Moffat, A. F. J.; Neijssel, C.; Norman, C. Ramírez-Agudelo, O. H.; Richardson, N. D.; Schootemeijer, A.; Shenar, T.; Soszyński, I.; Tramper, F.; Vink, J. S.

Astronomy & Astrophysics, Volume 598, A84 (2017)

ADS – Journal – arXiv

Abstract

Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way.
Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region.
Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries.
Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus’s core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7).
Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe’s peak of star formation at redshifts z 1 to 2 which are estimated to have Z 0.5 Z.

Keywords: stars: early-type; stars: massive; binaries: spectroscopic; binaries: close; Astrophysics – Solar and Stellar Astrophysics


A New Prescription for the Mass-loss Rates of WC and WO Stars

Tramper, F.; Sana, H.; de Koter, A.

The Astrophysical Journal, Volume 833, Issue 2, 133 (2016)

ADS – Journal – arXiv

Abstract

We present a new empirical prescription for the mass-loss rates of carbon- and oxygen-sequence Wolf-Rayet stars as a function of their luminosity, surface chemical composition, and initial metallicity. The new prescription is based on results of detailed spectral analyses of WC and WO stars and improves the often applied Nugis and Lamers relation. We find that the mass-loss rates of WC and WO stars (with X = 0 and Y ≲ 0.98) can be expressed as {log} \dot{M}=-9.20+0.85{log}(L/L ) + 0.44 log Y + 0.25 log (Z Fe/Z Fe,☉). This relation is based on mass-loss determinations that assume a volume-filling factor of 0.1, but the prescription can easily be scaled to account for other volume-filling factors. The residual of the fit is σ = 0.06 dex. We investigated whether the relation can also describe the mass loss of hydrogen-free WN stars and showed that it can when an adjustment of the metallicity dependence ({log} \dot{M}\propto 1.3{log}({Z}{Fe}/{Z}{Fe,☉ })) is applied. Compared to that of Nugis and Lamers, \dot{M} is less sensitive to the luminosity and the surface abundance, implying a stronger mass loss of massive stars in their late stages of evolution. The modest metallicity dependence implies that if WC or WO stars are formed in metal-deficient environments, their mass-loss rates are higher than currently anticipated. These effects may result in the formation of a larger number of SNe Ic and fewer black holes and may favor the production of superluminous SNe Ic through interaction with C- and O-rich circumstellar material or dense stellar wind.

Keywords: stars: evolution; stars: fundamental parameters; stars: mass-loss; stars: massive; stars: winds; outflows; stars: Wolf─Rayet; Astrophysics – Solar and Stellar Astrophysics


The mass of the very massive binary WR21a

Tramper, F.; Sana, H.; Fitzsimons, N. E.; de Koter, A.; Kaper, L.; Mahy, L.; Moffat, A.

Monthly Notices of the Royal Astronomical Society, Volume 455, Issue 2, 1275 (2016)

ADS – Journal – arXiv

Abstract

We present multi-epoch spectroscopic observations of the massive binary system WR21a, which include the 2011 January periastron passage. Our spectra reveal multiple SB2 lines and facilitate an accurate determination of the orbit and the spectral types of the components. We obtain minimum masses of 64.4 ± 4.8 M and 36.3 ± 1.7 M for the two components of WR21a. Using disentangled spectra of the individual components, we derive spectral types of O3/WN5ha and O3Vz ((f*)) for the primary and secondary, respectively. Using the spectral type of the secondary as an indication for its mass, we estimate an orbital inclination of I = 58.8 ± 2.5° and absolute masses of 103.6 ± 10.2 M and 58.3 ± 3.7 M, in agreement with the luminosity of the system. The spectral types of the WR21a components indicate that the stars are very young (1-2 Myr), similar to the age of the nearby Westerlund 2 cluster. We use evolutionary tracks to determine the mass-luminosity relation for the total system mass. We find that for a distance of 8 kpc and an age of 1.5 Myr, the derived absolute masses are in good agreement with those from evolutionary predictions.

Keywords: binaries: close; binaries: spectroscopic; stars: early-type; stars: fundamental parameters; stars: individual: WR21a; stars: Wolf-Rayet; Astrophysics – Solar and Stellar Astrophysics